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Square	root	of	147	simplified

A	square	root	of	a	number	is	a	number	that,	when	it	is	multiplied	by	itself	(squared),	gives	the	first	number	again.	For	example,	2	is	the	square	root	of	4,	because	2x2=4.	Only	numbers	bigger	than	or	equal	to	zero	have	real	square	roots.	A	number	bigger	than	zero	has	two	square	roots:	one	is	positive	(bigger	than	zero)	and	the	other	is	negative
(smaller	than	zero).	For	example,	4	has	two	square	roots:	2	and	-2.	The	only	square	root	of	zero	is	zero.	A	whole	number	with	a	square	root	that	is	also	a	whole	number	is	called	a	perfect	square.	The	square	root	radical	is	simplified	or	in	its	simplest	form	only	when	the	radicand	has	no	square	factors	left.	A	radical	is	also	in	simplest	form	when	the
radicand	is	not	a	fraction.	In	linear	algebra,	the	Cholesky	decomposition	or	Cholesky	factorization	(pronounced	/ʃəˈlɛski/	shə-LES-kee)	is	a	decomposition	of	a	Hermitian,	positive-definite	matrix	into	the	product	of	a	lower	triangular	matrix	and	its	conjugate	transpose,	which	is	useful	for	efficient	numerical	solutions,	e.g.,	Monte	Carlo	simulations.	It	was
discovered	by	André-Louis	Cholesky	for	real	matrices.	When	it	is	applicable,	the	Cholesky	decomposition	is	roughly	twice	as	efficient	as	the	LU	decomposition	for	solving	systems	of	linear	equations.[1]	Statement	The	Cholesky	decomposition	of	a	Hermitian	positive-definite	matrix	A,	is	a	decomposition	of	the	form	A	=	L	L	∗	,	{\displaystyle	\mathbf	{A}
=\mathbf	{LL}	^{*},}	where	L	is	a	lower	triangular	matrix	with	real	and	positive	diagonal	entries,	and	L*	denotes	the	conjugate	transpose	of	L.	Every	Hermitian	positive-definite	matrix	(and	thus	also	every	real-valued	symmetric	positive-definite	matrix)	has	a	unique	Cholesky	decomposition.[2]	The	converse	holds	trivially:	if	A	can	be	written	as	LL*
for	some	invertible	L,	lower	triangular	or	otherwise,	then	A	is	Hermitian	and	positive	definite.	When	A	is	a	real	matrix	(hence	symmetric	positive-definite),	the	factorization	may	be	written	A	=	L	L	T	,	{\displaystyle	\mathbf	{A}	=\mathbf	{LL}	^{\mathsf	{T}},}	where	L	is	a	real	lower	triangular	matrix	with	positive	diagonal	entries.[3][4][5]	Positive
semidefinite	matrices	If	a	Hermitian	matrix	A	is	only	positive	semidefinite,	instead	of	positive	definite,	then	it	still	has	a	decomposition	of	the	form	A	=	LL*	where	the	diagonal	entries	of	L	are	allowed	to	be	zero.[6]	The	decomposition	need	not	be	unique,	for	example:	[	0	0	0	1	]	=	L	L	∗	,	L	=	[	0	0	cos		θ	sin		θ	]	.	{\displaystyle
{\begin{bmatrix}0&0\\0&1\end{bmatrix}}=\mathbf	{L}	\mathbf	{L}	^{*},\quad	\quad	\mathbf	{L}	={\begin{bmatrix}0&0\\\cos	\theta	&\sin	\theta	\end{bmatrix}}.}	However,	if	the	rank	of	A	is	r,	then	there	is	a	unique	lower	triangular	L	with	exactly	r	positive	diagonal	elements	and	n−r	columns	containing	all	zeroes.[7]	Alternatively,	the
decomposition	can	be	made	unique	when	a	pivoting	choice	is	fixed.	Formally,	if	A	is	an	n	×	n	positive	semidefinite	matrix	of	rank	r,	then	there	is	at	least	one	permutation	matrix	P	such	that	P	A	PT	has	a	unique	decomposition	of	the	form	P	A	PT	=	L	L*	with	L	=	[	L	1	0	L	2	0	]	{\displaystyle	\mathbf	{L}	={\begin{bmatrix}\mathbf	{L}	_{1}&0\\\mathbf
{L}	_{2}&0\end{bmatrix}}}	,	where	L1	is	an	r	×	r	lower	triangular	matrix	with	positive	diagonal.[8]	LDL	decomposition	A	closely	related	variant	of	the	classical	Cholesky	decomposition	is	the	LDL	decomposition,	A	=	L	D	L	∗	,	{\displaystyle	\mathbf	{A}	=\mathbf	{LDL}	^{*},}	where	L	is	a	lower	unit	triangular	(unitriangular)	matrix,	and	D	is	a
diagonal	matrix.	That	is,	the	diagonal	elements	of	L	are	required	to	be	1	at	the	cost	of	introducing	an	additional	diagonal	matrix	D	in	the	decomposition.	The	main	advantage	is	that	the	LDL	decomposition	can	be	computed	and	used	with	essentially	the	same	algorithms,	but	avoids	extracting	square	roots.[9]	For	this	reason,	the	LDL	decomposition	is
often	called	the	square-root-free	Cholesky	decomposition.	For	real	matrices,	the	factorization	has	the	form	A	=	LDLT	and	is	often	referred	to	as	LDLT	decomposition	(or	LDLT	decomposition,	or	LDL′).	It	is	closely	related	to	the	eigendecomposition	of	real	symmetric	matrices,	A	=	QΛQT.	The	LDL	decomposition	is	related	to	the	classical	Cholesky
decomposition	of	the	form	LL*	as	follows:	A	=	L	D	L	∗	=	L	D	1	/	2	(	D	1	/	2	)	∗	L	∗	=	L	D	1	/	2	(	L	D	1	/	2	)	∗	.	{\displaystyle	\mathbf	{A}	=\mathbf	{LDL}	^{*}=\mathbf	{L}	\mathbf	{D}	^{1/2}\left(\mathbf	{D}	^{1/2}\right)^{*}\mathbf	{L}	^{*}=\mathbf	{L}	\mathbf	{D}	^{1/2}\left(\mathbf	{L}	\mathbf	{D}	^{1/2}\right)^{*}.}	Conversely,	given
the	classical	Cholesky	decomposition	A	=	C	C	∗	{\displaystyle	\mathbf	{A}	=\mathbf	{C}	\mathbf	{C}	^{*}}	of	a	positive	definite	matrix,	if	S	is	a	diagonal	matrix	that	contains	the	main	diagonal	of	C	{\displaystyle	\mathbf	{C}	}	,	then	a	A	can	be	decomposed	as	L	D	L	∗	{\displaystyle	\mathbf	{L}	\mathbf	{D}	\mathbf	{L}	^{*}}	where	L	=	C	S	−	1
{\displaystyle	\mathbf	{L}	=\mathbf	{C}	\mathbf	{S}	^{-1}}	(this	rescales	each	column	to	makes	diagonal	elements	1),	D	=	S	2	.	{\displaystyle	\mathbf	{D}	=\mathbf	{S}	^{2}.}	If	A	is	positive	definite	then	the	diagonal	elements	of	D	are	all	positive.	For	positive	semidefinite	A,	an	L	D	L	∗	{\displaystyle	\mathbf	{L}	\mathbf	{D}	\mathbf	{L}	^{*}}
decomposition	exists	where	the	number	of	non-zero	elements	on	the	diagonal	D	is	exactly	the	rank	of	A.[10]	Some	indefinite	matrices	for	which	no	Cholesky	decomposition	exists	have	an	LDL	decomposition	with	negative	entries	in	D:	it	suffices	that	the	first	n−1	leading	principal	minors	of	A	are	non-singular.[11]	Example	Here	is	the	Cholesky
decomposition	of	a	symmetric	real	matrix:	(	4	12	−	16	12	37	−	43	−	16	−	43	98	)	=	(	2	0	0	6	1	0	−	8	5	3	)	(	2	6	−	8	0	1	5	0	0	3	)	.	{\displaystyle	{\begin{aligned}\left({\begin{array}{*{3}{r}}4&12&-16\\12&37&-43\\-16&-43&98\\\end{array}}\right)=\left({\begin{array}{*{3}{r}}2&0&0\\6&1&0\\-8&5&3\\\end{array}}\right)\left({\begin{array}{*
{3}{r}}2&6&-8\\0&1&5\\0&0&3\\\end{array}}\right).\end{aligned}}}	And	here	is	its	LDLT	decomposition:	(	4	12	−	16	12	37	−	43	−	16	−	43	98	)	=	(	1	0	0	3	1	0	−	4	5	1	)	(	4	0	0	0	1	0	0	0	9	)	(	1	3	−	4	0	1	5	0	0	1	)	.	{\displaystyle	{\begin{aligned}\left({\begin{array}{*{3}
{r}}4&12&-16\\12&37&-43\\-16&-43&98\\\end{array}}\right)&=\left({\begin{array}{*{3}{r}}1&0&0\\3&1&0\\-4&5&1\\\end{array}}\right)\left({\begin{array}{*{3}{r}}4&0&0\\0&1&0\\0&0&9\\\end{array}}\right)\left({\begin{array}{*{3}{r}}1&3&-4\\0&1&5\\0&0&1\\\end{array}}\right).\end{aligned}}}	Applications	The	Cholesky
decomposition	is	mainly	used	for	the	numerical	solution	of	linear	equations	A	x	=	b	{\displaystyle	\mathbf	{Ax}	=\mathbf	{b}	}	.	If	A	is	symmetric	and	positive	definite,	then	we	can	solve	A	x	=	b	{\displaystyle	\mathbf	{Ax}	=\mathbf	{b}	}	by	first	computing	the	Cholesky	decomposition	A	=	L	L	∗	{\displaystyle	\mathbf	{A}	=\mathbf	{LL}	^{\mathrm
{*}	}}	,	then	solving	L	y	=	b	{\displaystyle	\mathbf	{Ly}	=\mathbf	{b}	}	for	y	by	forward	substitution,	and	finally	solving	L	∗	x	=	y	{\displaystyle	\mathbf	{L^{*}x}	=\mathbf	{y}	}	for	x	by	back	substitution.	An	alternative	way	to	eliminate	taking	square	roots	in	the	L	L	∗	{\displaystyle	\mathbf	{LL}	^{\mathrm	{*}	}}	decomposition	is	to	compute	the
Cholesky	decomposition	A	=	L	D	L	∗	{\displaystyle	\mathbf	{A}	=\mathbf	{LDL}	^{\mathrm	{*}	}}	,	then	solving	L	y	=	b	{\displaystyle	\mathbf	{Ly}	=\mathbf	{b}	}	for	y,	and	finally	solving	D	L	∗	x	=	y	{\displaystyle	\mathbf	{DL}	^{\mathrm	{*}	}\mathbf	{x}	=\mathbf	{y}	}	.	For	linear	systems	that	can	be	put	into	symmetric	form,	the	Cholesky
decomposition	(or	its	LDL	variant)	is	the	method	of	choice,	for	superior	efficiency	and	numerical	stability.	Compared	to	the	LU	decomposition,	it	is	roughly	twice	as	efficient.[1]	Linear	least	squares	Systems	of	the	form	Ax	=	b	with	A	symmetric	and	positive	definite	arise	quite	often	in	applications.	For	instance,	the	normal	equations	in	linear	least
squares	problems	are	of	this	form.	It	may	also	happen	that	matrix	A	comes	from	an	energy	functional,	which	must	be	positive	from	physical	considerations;	this	happens	frequently	in	the	numerical	solution	of	partial	differential	equations.	Non-linear	optimization	Non-linear	multi-variate	functions	may	be	minimized	over	their	parameters	using	variants
of	Newton's	method	called	quasi-Newton	methods.	At	iteration	k,	the	search	steps	in	a	direction	p	k	{\displaystyle	p_{k}}	defined	by	solving	B	k	p	k	=	−	g	k	{\displaystyle	B_{k}p_{k}=-g_{k}}	for	p	k	{\displaystyle	p_{k}}	,	where	p	k	{\displaystyle	p_{k}}	is	the	step	direction,	g	k	{\displaystyle	g_{k}}	is	the	gradient,	and	B	k	{\displaystyle	B_{k}}	is
an	approximation	to	the	Hessian	matrix	formed	by	repeating	rank-1	updates	at	each	iteration.	Two	well-known	update	formulas	are	called	Davidon–Fletcher–Powell	(DFP)	and	Broyden–Fletcher–Goldfarb–Shanno	(BFGS).	Loss	of	the	positive-definite	condition	through	round-off	error	is	avoided	if	rather	than	updating	an	approximation	to	the	inverse	of
the	Hessian,	one	updates	the	Cholesky	decomposition	of	an	approximation	of	the	Hessian	matrix	itself	.[12]	Monte	Carlo	simulation	The	Cholesky	decomposition	is	commonly	used	in	the	Monte	Carlo	method	for	simulating	systems	with	multiple	correlated	variables.	The	covariance	matrix	is	decomposed	to	give	the	lower-triangular	L.	Applying	this	to	a
vector	of	uncorrelated	samples	u	produces	a	sample	vector	Lu	with	the	covariance	properties	of	the	system	being	modeled.[13]	The	following	simplified	example	shows	the	economy	one	gets	from	the	Cholesky	decomposition:	suppose	the	goal	is	to	generate	two	correlated	normal	variables	x	1	{\displaystyle	x_{1}}	and	x	2	{\displaystyle	x_{2}}	with
given	correlation	coefficient	ρ	{\displaystyle	\rho	}	.	To	accomplish	that,	it	is	necessary	to	first	generate	two	uncorrelated	Gaussian	random	variables	z	1	{\displaystyle	z_{1}}	and	z	2	{\displaystyle	z_{2}}	,	which	can	be	done	using	a	Box–Muller	transform.	Given	the	required	correlation	coefficient	ρ	{\displaystyle	\rho	}	,	the	correlated	normal
variables	can	be	obtained	via	the	transformations	x	1	=	z	1	{\displaystyle	x_{1}=z_{1}}	and	x	2	=	ρ	z	1	+	1	−	ρ	2	z	2	{\textstyle	x_{2}=\rho	z_{1}+{\sqrt	{1-\rho	^{2}}}z_{2}}	.	Kalman	filters	Unscented	Kalman	filters	commonly	use	the	Cholesky	decomposition	to	choose	a	set	of	so-called	sigma	points.	The	Kalman	filter	tracks	the	average	state	of	a
system	as	a	vector	x	of	length	N	and	covariance	as	an	N	×	N	matrix	P.	The	matrix	P	is	always	positive	semi-definite	and	can	be	decomposed	into	LLT.	The	columns	of	L	can	be	added	and	subtracted	from	the	mean	x	to	form	a	set	of	2N	vectors	called	sigma	points.	These	sigma	points	completely	capture	the	mean	and	covariance	of	the	system	state.
Matrix	inversion	The	explicit	inverse	of	a	Hermitian	matrix	can	be	computed	by	Cholesky	decomposition,	in	a	manner	similar	to	solving	linear	systems,	using	n	3	{\displaystyle	n^{3}}	operations	(	1	2	n	3	{\displaystyle	{\tfrac	{1}{2}}n^{3}}	multiplications).[9]	The	entire	inversion	can	even	be	efficiently	performed	in-place.	A	non-Hermitian	matrix	B
can	also	be	inverted	using	the	following	identity,	where	BB*	will	always	be	Hermitian:	B	−	1	=	B	∗	(	B	B	∗	)	−	1	.	{\displaystyle	\mathbf	{B}	^{-1}=\mathbf	{B}	^{*}(\mathbf	{BB}	^{*})^{-1}.}	Computation	There	are	various	methods	for	calculating	the	Cholesky	decomposition.	The	computational	complexity	of	commonly	used	algorithms	is	O(n3)	in
general.[citation	needed]	The	algorithms	described	below	all	involve	about	(1/3)n3	FLOPs	(n3/6	multiplications	and	the	same	number	of	additions)	for	real	flavors	and	(4/3)n3	FLOPs	for	complex	flavors,[14]	where	n	is	the	size	of	the	matrix	A.	Hence,	they	have	half	the	cost	of	the	LU	decomposition,	which	uses	2n3/3	FLOPs	(see	Trefethen	and	Bau
1997).	Which	of	the	algorithms	below	is	faster	depends	on	the	details	of	the	implementation.	Generally,	the	first	algorithm	will	be	slightly	slower	because	it	accesses	the	data	in	a	less	regular	manner.	The	Cholesky	algorithm	The	Cholesky	algorithm,	used	to	calculate	the	decomposition	matrix	L,	is	a	modified	version	of	Gaussian	elimination.	The
recursive	algorithm	starts	with	i	:=	1	and	A(1)	:=	A.	At	step	i,	the	matrix	A(i)	has	the	following	form:	A	(	i	)	=	(	I	i	−	1	0	0	0	a	i	,	i	b	i	∗	0	b	i	B	(	i	)	)	,	{\displaystyle	\mathbf	{A}	^{(i)}={\begin{pmatrix}\mathbf	{I}	_{i-1}&0&0\\0&a_{i,i}&\mathbf	{b}	_{i}^{*}\\0&\mathbf	{b}	_{i}&\mathbf	{B}	^{(i)}\end{pmatrix}},}	where	Ii−1	denotes	the	identity
matrix	of	dimension	i	−	1.	If	we	now	define	the	matrix	Li	by	L	i	:=	(	I	i	−	1	0	0	0	a	i	,	i	0	0	1	a	i	,	i	b	i	I	n	−	i	)	,	{\displaystyle	\mathbf	{L}	_{i}:={\begin{pmatrix}\mathbf	{I}	_{i-1}&0&0\\0&{\sqrt	{a_{i,i}}}&0\\0&{\frac	{1}{\sqrt	{a_{i,i}}}}\mathbf	{b}	_{i}&\mathbf	{I}	_{n-i}\end{pmatrix}},}	then	we	can	write	A(i)	as	A	(	i	)	=	L	i	A	(	i	+	1	)	L	i	∗
{\displaystyle	\mathbf	{A}	^{(i)}=\mathbf	{L}	_{i}\mathbf	{A}	^{(i+1)}\mathbf	{L}	_{i}^{*}}	where	A	(	i	+	1	)	=	(	I	i	−	1	0	0	0	1	0	0	0	B	(	i	)	−	1	a	i	,	i	b	i	b	i	∗	)	.	{\displaystyle	\mathbf	{A}	^{(i+1)}={\begin{pmatrix}\mathbf	{I}	_{i-1}&0&0\\0&1&0\\0&0&\mathbf	{B}	^{(i)}-{\frac	{1}{a_{i,i}}}\mathbf	{b}	_{i}\mathbf	{b}
_{i}^{*}\end{pmatrix}}.}	Note	that	bi	b*i	is	an	outer	product,	therefore	this	algorithm	is	called	the	outer-product	version	in	(Golub	&	Van	Loan).	We	repeat	this	for	i	from	1	to	n.	After	n	steps,	we	get	A(n+1)	=	I.	Hence,	the	lower	triangular	matrix	L	we	are	looking	for	is	calculated	as	L	:=	L	1	L	2	…	L	n	.	{\displaystyle	\mathbf	{L}	:=\mathbf	{L}
_{1}\mathbf	{L}	_{2}\dots	\mathbf	{L}	_{n}.}	The	Cholesky–Banachiewicz	and	Cholesky–Crout	algorithms	Access	pattern	(white)	and	writing	pattern	(yellow)	for	the	in-place	Cholesky—Banachiewicz	algorithm	on	a	5×5	matrix	If	we	write	out	the	equation	A	=	L	L	T	=	(	L	11	0	0	L	21	L	22	0	L	31	L	32	L	33	)	(	L	11	L	21	L	31	0	L	22	L	32	0	0	L	33	)	=	(	L
11	2	(	symmetric	)	L	21	L	11	L	21	2	+	L	22	2	L	31	L	11	L	31	L	21	+	L	32	L	22	L	31	2	+	L	32	2	+	L	33	2	)	,	{\displaystyle	{\begin{aligned}\mathbf	{A}	=\mathbf	{LL}	^{T}&={\begin{pmatrix}L_{11}&0&0\\L_{21}&L_{22}&0\\L_{31}&L_{32}&L_{33}\\\end{pmatrix}}
{\begin{pmatrix}L_{11}&L_{21}&L_{31}\\0&L_{22}&L_{32}\\0&0&L_{33}\end{pmatrix}}\\[8pt]&={\begin{pmatrix}L_{11}^{2}&&({\text{symmetric}})\\L_{21}L_{11}&L_{21}^{2}+L_{22}^{2}&\\L_{31}L_{11}&L_{31}L_{21}+L_{32}L_{22}&L_{31}^{2}+L_{32}^{2}+L_{33}^{2}\end{pmatrix}},\end{aligned}}}	we	obtain	the
following:	L	=	(	A	11	0	0	A	21	/	L	11	A	22	−	L	21	2	0	A	31	/	L	11	(	A	32	−	L	31	L	21	)	/	L	22	A	33	−	L	31	2	−	L	32	2	)	{\displaystyle	{\begin{aligned}\mathbf	{L}	={\begin{pmatrix}{\sqrt	{A_{11}}}&0&0\\A_{21}/L_{11}&{\sqrt	{A_{22}-L_{21}^{2}}}&0\\A_{31}/L_{11}&\left(A_{32}-L_{31}L_{21}\right)/L_{22}&{\sqrt	{A_{33}-L_{31}^{2}-
L_{32}^{2}}}\end{pmatrix}}\end{aligned}}}	and	therefore	the	following	formulas	for	the	entries	of	L:	L	j	,	j	=	(	±	)	A	j	,	j	−	∑	k	=	1	j	−	1	L	j	,	k	2	,	{\displaystyle	L_{j,j}=(\pm	){\sqrt	{A_{j,j}-\sum	_{k=1}^{j-1}L_{j,k}^{2}}},}	L	i	,	j	=	1	L	j	,	j	(	A	i	,	j	−	∑	k	=	1	j	−	1	L	i	,	k	L	j	,	k	)	for		i	>	j	.	{\displaystyle	L_{i,j}={\frac	{1}{L_{j,j}}}\left(A_{i,j}-\sum
_{k=1}^{j-1}L_{i,k}L_{j,k}\right)\quad	{\text{for	}}i>j.}	For	complex	and	real	matrices,	inconsequential	arbitrary	sign	changes	of	diagonal	and	associated	off-diagonal	elements	are	allowed.	The	expression	under	the	square	root	is	always	positive	if	A	is	real	and	positive-definite.	For	complex	Hermitian	matrix,	the	following	formula	applies:	L	j	,	j	=
A	j	,	j	−	∑	k	=	1	j	−	1	L	j	,	k	L	j	,	k	∗	,	{\displaystyle	L_{j,j}={\sqrt	{A_{j,j}-\sum	_{k=1}^{j-1}L_{j,k}L_{j,k}^{*}}},}	L	i	,	j	=	1	L	j	,	j	(	A	i	,	j	−	∑	k	=	1	j	−	1	L	i	,	k	L	j	,	k	∗	)	for		i	>	j	.	{\displaystyle	L_{i,j}={\frac	{1}{L_{j,j}}}\left(A_{i,j}-\sum	_{k=1}^{j-1}L_{i,k}L_{j,k}^{*}\right)\quad	{\text{for	}}i>j.}	So	we	can	compute	the	(i,	j)	entry	if	we
know	the	entries	to	the	left	and	above.	The	computation	is	usually	arranged	in	either	of	the	following	orders:	The	Cholesky–Banachiewicz	algorithm	starts	from	the	upper	left	corner	of	the	matrix	L	and	proceeds	to	calculate	the	matrix	row	by	row.	for	(i	=	0;	i	<	dimensionSize;	i++)	{	for	(j	=	0;	j
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